sinx的不定积分 sinx的不定积分是多少

  sinx的不定积分是:-cosx。积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

  积分的一个严格的数学定义由波恩哈德·黎曼给出。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。比如说,路径积分是多元函数的积分,积分的区间不再是一条线段,而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。

  不定积分的意义:

  一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。

  若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

时间: 2024-12-09 12:13:35

sinx的不定积分 sinx的不定积分是多少的相关文章

cosx/sinx+cosx的不定积分 sinx cosx/√sinx-cosx的不定积分

cosx/sinx+cosx的不定积分是:∫(sinxcosx)/(sinx+cosx)dx=(1/2)(-cosx+sinx)-[1/(2√2)]ln|csc(x+π/4)-cot(x+π/4)|+C.C为积分常数. 解答过程如下: ∫(sinxcosx)/(sinx+cosx)dx =(1/2)∫(2sinxcosx)/(sinx+cosx)dx =(1/2)∫[(1+2sinxcosx)-1]/(sinx+cosx)dx =(1/2)∫(sin²x+2sinxcosx+cos²x)/(si

secx的不定积分推导过程 secx的不定积分公式推导

secx的不定积分推导过程为:∫secxdx=∫(1/cosx)dx=∫(cosx/cosx^2)dx=∫1/(1-sinx^2)dsinx=∫(1/(1+sinx)+1/(1-sinx))dsinx/2=(ln|1+sinx|-ln|1-sinx|)/2+C=ln|(1+sinx)/(1-sinx)|/2+C. 性质: y=secx的性质: (1)定义域,{x|x≠kπ+π/2,k∈Z}. (2)值域,|secx|≥1.即secx≥1或secx≤-1. (3)y=secx是偶函数,即sec(-

根号x^2-1的不定积分 根号x^2-1的不定积分是

  根号x^2-1的不定积分是(1/2[arcsinx+x√(1-x²)]+C,x=sinθ,dx=cosθdθ.=∫(1+cos2θ)/2 dθ=θ/2+(sin2θ)/4+C.=(arcsinx)/2+(sinθcosθ)/2+C,=(arcsinx)/2+(x√(1-x²))/2+C.=(1/2)[arcsinx+x√(1-x²)]+C. 不定积分求法: 1.积分公式法.直接利用积分公式求出不定积分. 2.换元积分法.换元积分法可分为第一类换元法与第二类换元法. (1)第一类换元法(即凑微

csc^2x的不定积分 csc^2x的不定积分等于多少

∫csc²xdx=-cotx+C.C为积分常数.分析过程如下:∫sec²xdx=tanx+C,∫csc²xdx=-∫sec²(π/2-x)d(π/2-x)=-tan(π/2-x)+C=-cotx+C. 不定积分的公式: 1.∫adx=ax+C,a和C都是常数: 2.∫x^adx=[x^(a+1)]/(a+1)+C,其中a为常数且a≠-1: 3.∫1/xdx=ln|x|+C: 4.∫a^xdx=(1/lna)a^x+C,0且a≠1: 5.∫e^xdx=e^x+C: 6.∫cosxdx=sinx+C

sinx是奇函数还是偶函数 cosx是奇函数还是偶函数

sinx是奇函数.奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=,-f(x),那么函数f(x)就叫做奇函数.奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.        偶函数定义:如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数(Even Function).偶函数的定义域必须关于y轴对称,否则不能成为偶函数. 扩展资料

y=sinx的反函数是什么 ysinx的反函数是什么

y=sinx在[-π/2,π/2]的反函数可以写为x=arcsiny.反正弦函数是反三角函数之一,为正弦函数y=sinx(x∈[-π,π])的反函数.设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交.这个交点的y坐标等于sinθ.在这个图形中的三角形确保了这个公式:半径等于斜边并有长度1,所以有了sinθ=y/1. 扩展资料: 反函数的性质: (1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射: (2)一个函数与它的反函数在相应区间上单调性一致: (3)大部分偶函数不存在

x分之lnx的不定积分 x分之lnx的不定积分详细

x分之lnx的不定积分是∫(lnx)/xdx=∫lnxd(lnx).在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f.一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分. 连续函数,一定存在定积分和不定积分,若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在,若有跳跃.可去.无穷间断点,则原函数一定不存在,即不定积分一定不存在. 求lnx不定积分步骤如下: ∫lnxdx. =xlnx-∫xdlnx. =xlnx-∫

∫sin(t^2)dt不定积分 ∫sin(t^2)dt不定积分求导

∫sin(t^2)dt不定积分是:∫sin(t∧2)dt即∫sint²dt是积分积不出来的函数之一.∫sin²tdt=∫(1-cos2t)/2 dt=∫1/2dt-∫(cos2t)/2 dt=∫1/2dt-1/4 d(sin2t)=t/2-(sin2t)/4+C(C为任意常数). 在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f.不定积分和定积分间的关系由微积分基本定理确定.其中F是f的不定积分. 虽然很多函数都可通过如上的各种手段计算其不定积分,但这并

secx^4的不定积分 secx^4的不定积分推导

不定积分是:原式=∫(secx)^4dx=∫(secx)^2*(secx)^2dx=∫(1+(tanx)^2)*(1+(tanx)^2)dx,令y=tanx,则dy=(1+(tanx)^2)dx=(1+y^2)dx,上式=∫(1+y^2)dy=y+1/3*y^3=tanx+1/3*(tanx)^3+C. 一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分.连续函数,一定存在定积分和不定积分:若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在:若有跳跃.可去