什么是有理数 有理数的定义

  有理数这个词最初源自古希腊,是由古希腊著名的数学家、哲学家毕达哥拉斯最早提出的,后来传到了西方,明朝的时候经由传教士传到了中国,徐光启当时把它译为“理”,据说“理”在当时文言文中有“比值”的意思,后又传到日本,日本学者就把它理解为“道理、理性”。

  有理数为整数和分数的统称。

  有理数可分为正有理数、 0 和负有理数。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

时间: 2024-11-05 06:18:37

什么是有理数 有理数的定义的相关文章

什么是有理数 有理数是什么

有理数为整数和分数的统称.有理数可分为正有理数.0.负有理数.正整数和正分数合称为正有理数,负整数和负分数合称为负有理数.由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数. 有理数这个词最初源自古希腊,是由古希腊著名的数学家.哲学家毕达哥拉斯最早提出的,后来传到了西方,明朝的时候经由传教士传到了中国,徐光启当时把它译为"理",据说"理"在当时文言文中有"比值"的意

有理数无理数的定义 有理数的概念是什么

有理数的定义:有理数是整数和分数的统称.无理数的定义:无理数是所有不是有理数字的实数.无理数也叫做无限不循环小数,是实数范围内不能表示成两个整数之比的数.实数是有理数和无理数的总称. 有理数是什么 有理数是整数和分数的集合.有理数集可以用大写黑正体符号Q代表,是元素为全体有理数的集合.正整数和正分数合称为正有理数,负整数和负分数合称为负有理数.因而有理数集的数可分为正有理数.负有理数和零. 无理数是什么 无理数可以通过非终止的连续分数来处理,是实数范围内不能表示成两个整数之比的数,如圆周率.圆周

0是有理数还是无理数 0属于有理数还是无理数

0是有理数,是介于-1和1之间的整数,也是最小的自然数.有理数是正整数.0.负整数和分数的统称,是整数和分数的集合. 0是有理数还是无理数 0是介于-1和1之间的整数,是最小的自然数,也是有理数.0既不是正数也不是负数,而是正数和负数的分界点.0没有倒数,0的相反数是0,0的绝对值是0,0的平方根是0,0的立方根是0,0乘任何数都等于0,除0之外任何数的0次方等于1.0不能作为分母出现,0的所有倍数都是0,0不能作为除数. 有理数为整数(正整数.0.负整数)和分数的统称.正整数和正分数合称为正有

有理数的定义 有理数的定义是什么

有理数的定义:整数和分数的统称,即整数和分数的集合.整数包括了正整数.0.负整数,可以看作是分母为一的分数.不是有理数的实数称为无理数.正整数和正分数合称为正有理数,负整数和负分数合称为负有理数. 有理数集可以表示为整数集的扩张.在有理数集内,加法.减法.乘法.除法(除数不为零)4种运算可以随意运算. 有理数的分类有两种,按不同的标准如下: 1.按照有理数的性质分类:(1)有理数,包括整数.分数和0.(2)无理数......无限不循环小数. 有理数是"数与代数"这个领域中的很重要内容之

有理数和无理数的定义 有理数和无理数的定义和区别

有理数的定义:有理数是整数和分数的统称,是整数和分数的集合.无理数的定义:无理数是无限不循环小数,是所有非有理数的实数.无理数是指实数范围内不能表示成两个整数之比的数,比如圆周率. 有理数和无理数的区别 有理数和无理数都写成小数形式时,有理数能写成有限小数.所有的有理数都可以写成两个整数之比,而无理数却不能写成两个整数之比.常见的无理数有非完全平方数的平方根.π和e(其中后两者均为超越数)等.无理数的另一特征是无限的连分数表达式.无理数最早由毕达哥拉斯学派弟子希伯索斯发现. 有理数集是整数集的扩

有理数的定义 有理数的定义有哪些

有理数是正整数.0.负整数和分数的统称,是整数和分数的集合.正整数和正分数合称为正有理数,负整数和负分数合称为负有理数.因而有理数集的数可分为正有理数.负有理数和零.有理数集是整数集的扩张,在有理数集内,加法.减法.乘法.除法4种运算通行无阻. 整数也可看作是分母为一的分数.它是"数与代数"领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数.代数式.方程.不等式.直角坐标系.函数.统计等数学内容以及相关学科知识的基础.

无理数包括哪三类 无理数分为了哪三类

无理数包括这三类:含π的数,如:3π等:非完全平方数的平方根:函数式,如:lg3.sin10°等.无理数,也称为无限不循环小数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环. 在数学中,无理数是指所有非有理数的实数:理数是整数(正整数.0.负整数)和分数的统称,是整数和分数的集合.无理数是指实数范围内不能表示成两个整数之比的数.简单来说,无理数就是指在10进制下的无限不循环小数,如圆周率.非完全平方数的平方根等.而有理数由所有分数,整数组成,总能写成整数.有限

无理数是什么 什么是无理数

无理数也称为无限不循环小数,不能写作两整数之比.若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环.常见的无理数有非完全平方数的平方根.π和e等. 无理数最早由毕达哥拉斯学派弟子希伯索斯发现.无理数也称为无限不循环小数,不能写作两整数之比.简单的说,无理数就是10进制下的无限不循环小数. 在数学中,无理数是所有不是有理数字的实数,后者是由整数的比率(或分数)构成的数字.当两个线段的长度比是无理数时,线段也被描述为不可比较的,这意味着它们不能"测量",即没有长度("度

4又2分之1等于多少 4又2分之1得数是多少

4又2分之1等于多少?4又2分之1等于9/2.化成小数等于4.5.首先把四又二分之一拆分成4加2分之1:4+1/2.再用分子除以分母:4+1÷2.然后把2分之1化成小数是0.5.最后整数部分加小数部分,结果就等于4.5. 4又2分之1用小数表示为4.5.类似这样的分数,分为有理分数和无理分数;有理分数可除尽,能直接化为小数.分数化小数可分为三种情况:1.分数化为有限小数.2.分数化为纯循环小数.3.分数化为混循环小数. 什么是有理数?有理数是指整数可以看作分母为1的分数.正整数.0.负整数.正分