cosx/sinx+cosx的不定积分 sinx cosx/√sinx-cosx的不定积分

  cosx/sinx+cosx的不定积分是:∫(sinxcosx)/(sinx+cosx)dx=(1/2)(-cosx+sinx)-[1/(2√2)]ln|csc(x+π/4)-cot(x+π/4)|+C。C为积分常数。

  解答过程如下:

  ∫(sinxcosx)/(sinx+cosx)dx

  =(1/2)∫(2sinxcosx)/(sinx+cosx)dx

  =(1/2)∫[(1+2sinxcosx)-1]/(sinx+cosx)dx

  =(1/2)∫(sin²x+2sinxcosx+cos²x)/(sinx+cosx)dx-(1/2)∫dx/(sinx+cosx)

  =(1/2)∫(sinx+cosx)²/(sinx+cosx)dx-(1/2)∫dx/[√2sin(x+π/4)]

  =(1/2)∫(sinx+cosx)dx-[1/(2√2)]∫csc(x+π/4)dx

  =(1/2)(-cosx+sinx)-[1/(2√2)]ln|csc(x+π/4)-cot(x+π/4)|+C

  记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。如果f(x)在区间I上有原函数,即有一个函数F(x)使对任意x∈I,都有F'(x)=f(x),那么对任何常数显然也有[F(x)+C]'=f(x)。即对任何常数C,函数F(x)+C也是f(x)的原函数。这说明如果f(x)有一个原函数,那么f(x)就有无限多个原函数。

  设G(x)是f(x)的另一个原函数,即∀x∈I,G'(x)=f(x)。于是[G(x)-F(x)]'=G'(x)-F'(x)=f(x)-f(x)=0。

  由于在一个区间上导数恒为零的函数必为常数,所以G(x)-F(x)=C’(C‘为某个常数)。

  这表明G(x)与F(x)只差一个常数。因此,当C为任意常数时,表达式F(x)+C就可以表示f(x)的任意一个原函数。也就是说f(x)的全体原函数所组成的集合就是函数族{F(x)+C+∞}。

时间: 2024-10-17 22:59:22

cosx/sinx+cosx的不定积分 sinx cosx/√sinx-cosx的不定积分的相关文章

sinxcosx/sinx+cosx的积分 sinxcosx/(sinx cosx)积分

sinxcosx/sinx+cosx的积分为:∫(sinxcosx)/(sinx+cosx)dx=(1/2)(-cosx+sinx)-[1/(2√2)]ln|csc(x+π/4)-cot(x+π/4)|+C,C为积分常数. 解答过程如下: ∫(sinxcosx)/(sinx+cosx)dx =(1/2)∫(2sinxcosx)/(sinx+cosx)dx =(1/2)∫[(1+2sinxcosx)-1]/(sinx+cosx)dx =(1/2)∫(sin²x+2sinxcosx+cos²x)/(

sinx是奇函数还是偶函数 cosx是奇函数还是偶函数

sinx是奇函数.奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=,-f(x),那么函数f(x)就叫做奇函数.奇函数是指对于一个定义域关于原点对称的函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数.        偶函数定义:如果对于函数f(x)的定义域内任意的一个x,都有f(x)=f(-x),那么函数f(x)就叫做偶函数(Even Function).偶函数的定义域必须关于y轴对称,否则不能成为偶函数. 扩展资料

根号x^2-1的不定积分 根号x^2-1的不定积分是

  根号x^2-1的不定积分是(1/2[arcsinx+x√(1-x²)]+C,x=sinθ,dx=cosθdθ.=∫(1+cos2θ)/2 dθ=θ/2+(sin2θ)/4+C.=(arcsinx)/2+(sinθcosθ)/2+C,=(arcsinx)/2+(x√(1-x²))/2+C.=(1/2)[arcsinx+x√(1-x²)]+C. 不定积分求法: 1.积分公式法.直接利用积分公式求出不定积分. 2.换元积分法.换元积分法可分为第一类换元法与第二类换元法. (1)第一类换元法(即凑微

sinx的不定积分 sinx的不定积分是多少

sinx的不定积分是:-cosx.积分是微积分学与数学分析里的一个核心概念.通常分为定积分和不定积分两种.直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线.直线以及轴围成的曲边梯形的面积值(一种确定的实数值). 积分的一个严格的数学定义由波恩哈德·黎曼给出.黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限.从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分.比如说,路径积分是多元函数的积分,积分的区间不再是一

secx^4的不定积分 secx^4的不定积分推导

不定积分是:原式=∫(secx)^4dx=∫(secx)^2*(secx)^2dx=∫(1+(tanx)^2)*(1+(tanx)^2)dx,令y=tanx,则dy=(1+(tanx)^2)dx=(1+y^2)dx,上式=∫(1+y^2)dy=y+1/3*y^3=tanx+1/3*(tanx)^3+C. 一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分.连续函数,一定存在定积分和不定积分:若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在:若有跳跃.可去

x分之lnx的不定积分 x分之lnx的不定积分详细

x分之lnx的不定积分是∫(lnx)/xdx=∫lnxd(lnx).在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f.一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分. 连续函数,一定存在定积分和不定积分,若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在,若有跳跃.可去.无穷间断点,则原函数一定不存在,即不定积分一定不存在. 求lnx不定积分步骤如下: ∫lnxdx. =xlnx-∫xdlnx. =xlnx-∫

∫sin(t^2)dt不定积分 ∫sin(t^2)dt不定积分求导

∫sin(t^2)dt不定积分是:∫sin(t∧2)dt即∫sint²dt是积分积不出来的函数之一.∫sin²tdt=∫(1-cos2t)/2 dt=∫1/2dt-∫(cos2t)/2 dt=∫1/2dt-1/4 d(sin2t)=t/2-(sin2t)/4+C(C为任意常数). 在微积分中,一个函数f的不定积分,或原函数,或反导数,是一个导数等于f的函数F,即F′=f.不定积分和定积分间的关系由微积分基本定理确定.其中F是f的不定积分. 虽然很多函数都可通过如上的各种手段计算其不定积分,但这并

最小周期计算公式 最小正周期怎么求公式

y=Asin(ωx+ψ)或y=Acos(ωx+ψ)的最小正周期用公式计算:T=2π/ω.y=Atan(ωx+ψ)或y=cot(ωx+ψ)的最小正周期用公式计算:T=π/ω. 函数周期的计算公式 (1)f(x+a)=-f(x)周期为2a.证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a. (2)sinx的函数周期公式T=2π,sinx是正弦函数,周期是2π. (3)cosx的函数周期公式T=2π,cosx

常见导数公式表 高中常见导数公式表

常见导数公式主要有:1.f(x)=x^n(n不等于0)f'(x)=nx^(n-1)(x^n表示x的n次方):2.f(x)=sinx f'(x)=cosx:3.f(x)=cosx f'(x)=-sinx:4.f(x)=a^x f'(x)=a^xlna(0且a不等于1):5.f(x)=e^x f'(x)=e^x. 导数运算法则如下: (f(x)+/-g(x))'=f'(x)+/-g'(x): (f(x)g(x))'=f'(x)g(x)+f(x)g'(x): (g(x)/f(x))'=(f(x)'g(