y=sinx在[-π/2,π/2]的反函数可以写为x=arcsiny。反正弦函数是反三角函数之一,为正弦函数y=sinx(x∈[-π,π])的反函数。设一个过原点的线,同x轴正半部分得到一个角θ,并与单位圆相交。这个交点的y坐标等于sinθ。在这个图形中的三角形确保了这个公式;半径等于斜边并有长度1,所以有了sinθ=y/1。
扩展资料:
反函数的性质:
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射;
(2)一个函数与它的反函数在相应区间上单调性一致;
(3)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。
奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
(4)一段连续的函数的单调性在对应区间内具有一致性;
(5)严增(减)的函数一定有严格增(减)的反函数;
(6)反函数是相互的且具有唯一性。
时间: 2024-10-31 15:51:42