数学上的R代表集合实数集。R+表示正实数,R-表示负实数。实数集通俗地认为,通常包含所有有理数和无理数的集合就是实数集,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
实数集,包含所有有理数和无理数的集合,通常用大写字母R表示。18世纪,微积分学在实数的基础上发展起来。但当时的实数集并没有精确的定义。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。任何一个非空有上界的集合(包含于R)必有上确界。
加法定理:
1、对于任意属于集合R的元素a、b,可以定义它们的加法a+b,且a+b属于R。
2、加法有恒元0,且a+0=0+a=a(从而存在相反数)。
3、加法有交换律,a+b=b+a。
4、加法有结合律,(a+b)+c=a+(b+c)。
完备定理:
1、任何一个非空有上界的集合(包含于R)必有上确界。
2、设A、B是两个包含于R的集合,且对任何x属于A,y属于B,都有x<;y,那么必存在c属于R,使得对任何x属于A,y属于B,都有x<;c<;y。
符合加法、乘法公理、完备定理以及序公理的任何一个集合都叫做实数集,实数集的元素称为实数。
时间: 2024-12-15 21:37:52